

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Instituto de Matemática e Estatística

Av. João Naves de Àvila, 2121, Bloco 1F - Bairro Santa Mônica, Uberlândia-MG, CEP 38400-902 Telefone: +55 (34) 3239-4158/4156/4126 - www.ime.ufu.br - ime@ufu.br

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Componente Curricular:	Geometria Analítica									
Unidade Ofertante:	IME-UFU									
Código:	FAMAT31021		Período/Série:		10		Turma:	U		
Carga Horária:						Natureza:				
Teórica:	60	Prática:	0	Total:	60	Obrigatór	ią(X)	Optativa:	()	
Professor(A):	Jean Venato Santos					Ano/Semestre:		2024/02		
Observações:						·				

2. **EMENTA**

Vetores no plano e no espaço; Retas no plano e no espaço; Planos; Posições relativas entre retas; Posições relativas entre retas e planos; Posições relativas entre planos; Distâncias e ângulos; Coordenadas Polares; Cônicas; Superfícies Quádricas; Geração de Superfícies.

3. **JUSTIFICATIVA**

Disciplina básica do curso de Engenharia Civil.

4. **OBJETIVO**

Objetivo Geral:

Familiarizar o estudante ao uso da álgebra de vetores para o estudo da Geometria Plana e Espacial e suas aplicações na modelagem de problemas geométricos e físicos.

Objetivos Específicos:

- 1. Compreender os conceitos de vetor e suas operações;
- 2. Modelar equações matemáticas de retas, planos, cônicas e superfícies quádricas.
- 3. Desenvolver aptidão para analisar e resolver problemas matemáticos com cunho geométrico.

PROGRAMA

1. VETORES

Segmentos orientados e vetores

Adição e multiplicação por escalar e propriedades - abordagem geométrica

O Sistema de Coordenadas Cartesianas Ortogonais no plano e no espaço

Operações de adição e multiplicação por escalar e propriedades - abordagem geométrica

Norma (ou módulo) de vetor e distância entre dois pontos no espaço cartesiano

Produto interno (ou escalar) e ângulo entre vetores

Propriedades do produto interno, desigualdades e projeções ortogonais

Produto vetorial e significado geométrico de sua norma

Produto misto e significado geométrico de seu módulo

2. RETAS, PLANOS E DISTÂNCIAS

Equação vetorial, equações paramétricas, equações simétricas e equações reduzidas de uma reta no espaço cartesiano

Determinação da intersecção de duas retas

Ângulo entre duas retas

Posições relativas entre duas retas

Distância de ponto a reta e distância entre duas retas

Equação vetorial, equações paramétricas e equação geral de um plano no espaço cartesiano

Vetor normal a um plano

Determinação da intersecção de reta com plano e intersecção de dois planos

Ângulo entre uma reta e um plano e ângulo entre dois planos

Posições relativas entre reta e plano e posições relativas entre dois planos

Distância de ponto a plano, distância entre reta e plano e distância entre dois planos

3. CURVAS E SUPERFÍCIES

Curvas cônicas: a circunferência, a elipse, a parábola e a hipérbole vistas como seções cônicas

A circunferência, a elipse, a parábola e a hipérbole definidas como lugares geométricos no plano e seus elementos

Dedução das equações cartesianas reduzidas da circunferência, da elipse, da parábola e da hipérbole

Identificação de curva cônica por meio de completamento de quadrados (translação de sistema de coordenadas)

Definições geométricas de superfícies cilíndricas, superfícies cônicas e superfícies esféricas e superfícies de revolução

Superfícies quádricas Equações reduzidas das seguintes superfícies quádricas: cilindro e cone quádricos; esfera e elipsóide; hiperbolóides de uma e de duas folhas; parabolóides elíptico e hiperbólico. Identificação de superfícies quádricas de revolução

6. **METODOLOGIA**

Usaremos somente aulas expositivas ao longo deste curso. Os materiais didáticos utilizados serão giz e quadro-negro. No decorrer do curso serão disponibilizadas listas de exercícios, na plataforma moodle, sobre os assuntos expostos em sala de aula.

7. **AVALIAÇÃO**

A avaliação será composta de duas provas e um trabalho com consulta, sendo todos presenciais em horário de aula. As duas provas e o trabalho valerão 100 pontos cada. As datas e os respectivos conteúdos são:

1^a Prova (P1): **25/02/2025** (Vetores);

2^a Prova (P2): **01/04/2025** (Retas, planos e distâncias);

Trabalho (T): 28/04/2025 (Cônicas e quádricas).

Média:

M = (P1 + P2 + T)/3

7.1 AVALIAÇÃO DE RECUPERAÇÃO

Se M<60, haverá uma prova de recuperação valendo 100 pontos (dia **05/05/2025**), da matéria que tirou menor nota entre P1, P2 e T. Sua nota substituirá em M a menor nota entre P1, P2 ou T.

8. **BIBLIOGRAFIA**

Básica

- 1. BOULOS, P. Geometria analítica: um tratamento vetorial. 3ª ed. São Paulo: Pearson Education, 2005.
- 2. STEINBRUCH, A.; WINTERLE, P. Geometria analítica. São Paulo: Pearson Makron Books, 1987.
- 3. WINTERLE, P. Vetores e geometria analítica, 2ª ed., São Paulo: Pearson Education, 2014.
- 4. SANTOS, R. J. Um curso de geometria analítica e álgebra linear. (Disponível em: https://regijs.github.io/)

Complementar

- 1. LIMA, E. L., Geometria analítica e álgebra linear. Rio de Janeiro: IMPA, 2001.
- 2. SILVA, V.; REIS, G. L., Geometria analítica, 2ª ed. Rio de Janeiro: LTC, 1996.
- 3. SANTOS, N. M., Vetores e matrizes: uma introdução à Álgebra Linear, Rio de Janeiro: Cengage Learning, 2007.
- 4. SMITH, P. F.; GALE, A. S.; NEELEY, J. H. Geometria Analítica. Rio de Janeiro: Ao Livro Técnico, 1957.
- 5. ZÓZIMO, M. G., Curso de Geometria Analítica: com tratamento vetorial, Rio de Janeiro: Científica, 1969
- 9. **APROVAÇÃO**

Aprovado em reunião do Colegiado realizada em://	
Coordenação do Curso de Graduação:	

Documento assinado eletronicamente por **Jean Venato Santos**, **Professor(a) do Magistério Superior**, em 06/03/2025, às 12:17, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539</u>, <u>de 8 de outubro de 2015</u>.

A autenticidade deste documento pode ser conferida no site https://www.sei.ufu.br/sei/controlador_externo.php?
acesso_externo=0, informando o código verificador 6148115 e o código CRC B8CCDE41.

Referência: Processo nº 23117.083421/2024-31 SEI nº 6148115